Sains Malaysiana 55(1)(2026): 1-17
http://doi.org/10.17576/jsm-2026-5501-01
Enhanced Expression of Recombinant Cephalosporin
Acylase in Escherichia coli via Autoinduction Medium
(Pengekspresan Sefalosporin Asilase Rekombinan yang Dipertingkatkan dalam Escherichia coli melalui Medium Autoinduksi)
Ahmad Wibisana1,8,*, Sasmito Wulyoadi1,
Rudiyono1, Efrida Martius2, Afada Naafi’u Fariha3, Fahroziah Assyifa3, Dihan Laziba3, Niknik Nurhayati4,
Anna Safarida5, Uli Julia Nasution Mail6& Catur Sriherwanto7
1Research
Centre for Pharmaceutical Ingredients and Traditional Medicine, National
Research and Innovation Agency of Indonesia, Cibinong, Bogor, Indonesia
2Research
Centre for Vaccines and Drugs, National Research and Innovation Agency of
Indonesia, Cibinong, Bogor, Indonesia
3Directorate
of Laboratory Management, Research Facilities, and Science and Technology Area, National Research and Innovation Agency of Indonesia, B.J. Habibie
Building, Jl. M.H. Thamrin No. 8, Central Jakarta, Indonesia
4Research
Centre for Genetic Engineering, National Research and Innovation Agency of
Indonesia, Cibinong, Bogor, Indonesia
5Research
Centre for Applied Botany, National Research and Innovation Agency of
Indonesia, Cibinong, Bogor, Indonesia
6Bureau of Organization and Human Resources,
National Research and Innovation Agency of Indonesia, Cibinong, Bogor,
Indonesia
7Research
Centre for Applied Microbiology, National Research and Innovation Agency of
Indonesia, Cibinong, Bogor, Indonesia
8Chemical
Engineering, Pamulang University, Indonesia. Jl. Witana Harja 18b, Pamulang, South Tangerang, Indonesia
Diserahkan: 13 September 2024/Diterima: 6 Oktober 2025
Abstract
The large-scale synthesis of
β-lactam antibiotics, particularly cephalosporins, relies heavily on the
industrial production of recombinant cephalosporin acylase (CCA). This study aimed to identify the most suitable Escherichia
coli host strain for CCA production. The selected strain was then used for
optimizing medium components and culture conditions using an autoinduction
medium in shaking flask fermentation. Initially, three E. coli strains were evaluated: BL21(DE3),
BL21(DE3) RIPL, and B(DE3) Origami, to determine the most efficient host for
recombinant CCA expression. Among the tested conditions, the autoinduction
medium proved particularly effective, contributing to a significant improvement
in enzyme yield and serving as the basis for subsequent optimization
experiments. To identify the key factors influencing CCA production, a
Plackett-Burman design was employed to screen medium components and
fermentation parameters, with E. coli BL21(DE3) as the most optimal expression host. The significant variables were then
optimized using a Central Composite Design, which resulted in a maximum enzyme
activity of 53.3 U/mL under the following conditions: 0.78 g/L glucose
monohydrate, 1.12 g/L glycerol, 6.21 mL/L trace elements, and an enzyme
expression time of 19.48 h. The optimized conditions led to a 3.8-fold increase
in CCA activity compared to unoptimized conditions.
These findings provide valuable insights into efficient recombinant CCA
production and have important implications for its industrial application in
antibiotic synthesis.
Keywords: Central
composite design; enzyme characterization; enzyme kinetics; enzyme purification;
optimization
Abstrak
Sintesis berskala besar antibiotik β-laktam,
terutamanya sefalosporin sangat bergantung kepada penghasilan industri sefalosporin
asilase (CCA) rekombinan. Kajian ini bertujuan untuk mengenal pasti strain
perumah Escherichia coli yang paling sesuai untuk pengeluaran CCA.
Strain terpilih kemudiannya digunakan untuk mengoptimumkan komponen medium dan
keadaan kultur menggunakan medium autoinduksi dalam penapaian kelalang goncang.
Pada mulanya, tiga strain E. coli telah dinilai: BL21(DE3), BL21(DE3)
RIPL dan B(DE3) Origami, untuk menentukan hos yang paling berkesan untuk pengekspresan
CCA rekombinan. Antara keadaan yang diuji, medium autoinduksi terbukti sangat
berkesan, menyumbang kepada peningkatan ketara dalam hasil enzim dan berfungsi
sebagai asas untuk uji kaji pengoptimuman seterusnya. Untuk mengenal pasti
faktor utama yang mempengaruhi pengeluaran CCA, reka bentuk Plackett-Burman
telah digunakan untuk menapis komponen sederhana dan parameter fermentasi
dengan E. coli BL21(DE3) sebagai hos pengekspresan yang paling optimum. Pemboleh
ubah ketara kemudiannya dioptimumkan menggunakan reka bentuk komposit pusat
yang menghasilkan aktiviti enzim maksimum 53.3 U/mL di bawah keadaan berikut:
0.78 g/L glukosa monohidrat, 1.12 g/L gliserol, 6.21 mL/L unsur surih dan masa pengekspresan
enzim selama 19.48 jam. Keadaan yang dioptimumkan membawa kepada peningkatan
3.8 kali ganda dalam aktiviti CCA berbanding keadaan yang tidak dioptimumkan.
Penemuan ini memberikan pandangan berharga tentang pengeluaran CCA rekombinan
yang cekap dan mempunyai implikasi penting dalam aplikasi industri, terutamanya
sintesis antibiotik.
Kata kunci: Kinetik
enzim; pencirian enzim; pengoptimuman; penulenan enzim; reka bentuk komposit
pusat
RUJUKAN
Briand, L., Marcion, G., Kriznik, A., Heydel,
J.M., Artur, Y., Garrido, C., Seigneuric, R. & Neiers, F. 2016. A self-inducible heterologous protein
expression system in Escherichia coli. Scientific Reports 6: 33037.
Bui, T., Patel, P. & Preuss, C.V. 2024. Cephalosporins. In StatPearls [Internet].
Treasure Island (FL): StatPearls Publishing. https://www.ncbi.nlm.nih.gov/books/NBK551517/
(Accessed on 21st May 2025).
Conti, G., Pollegioni, L., Molla, G. & Rosini,
E. 2014. Strategic manipulation of an industrial
biocatalyst - Evolution of a cephalosporin C acylase. FEBS Journal 281:
2443-2455.
Correddu,
D., Montaño López, J.D.J., Angermayr,
S.A., Middleditch, M.J., Payne, L.S. & Leung, I.K. 2020. Effect of
consecutive rare codons on the recombinant production of human proteins in Escherichia
coli. IUBMB Life 72(2): 266-274.
de Marco, A. 2009. Strategies for successful recombinant expression of
disulfide bond-dependent proteins in Escherichia coli. Microbial Cell
Factories 8: 1-18.
Faizullabhoy,
M. & Wani, G. 2024. Cephalosporin drugs market - by generation (first,
second), indication (respiratory, UTI, STI, gastrointestinal infection), route
of administration (oral, parenteral, topical), type (generic, branded),
distribution channel, global forecast 2024–2032. Global Market Insights Report
ID: GMI8194.
https://www.gminsights.com/industry-analysis/cephalosporin-drugs-market
(Accessed on 21st May 2025).
Falak, S., Sajed, M. & Rashid, N. 2022. Strategies to enhance
soluble production of heterologous proteins in Escherichia coli. Biologia 77: 893-905.
Gaurav, K., Kundu, K. & Kundu, S. 2010. Biosynthesis of
cephalosporin-C acylase enzyme: Optimal media design, purification, and
characterization. Artificial Cells, Blood Substitutes, and Biotechnology 38(5): 277-283.
Isakova, A., Artykov, A., Vorontsova, Y., Dolgikh, D., Kirpichnikov, M., Gasparian, M. & Yagolovich,
A. 2023. Application of an autoinduction strategy to optimize the heterologous
production of an antitumor bispecific fusion protein based on the TRAIL receptor-selective
mutant variant in Escherichia coli. Molecular Biotechnology 65(4):
581-589.
Jobanputra, A.H. & Vasait, R.D. 2015.
Cephalosporin C acylase from Pseudomonas species: Production and
enhancement of its activity by optimization of process parameters. Biocatalysis
and Agricultural Biotechnology 4(4): 465-470.
Julkipli,
J., Syamsu, K. & Wibisana, A. 2022. Optimization
of cephalosporin C acylase immobilization using crosslinked enzyme aggregates
technique. Bionatura 7(1): 9.
Kataoka, K. & Takasu, A. 2020. IPTG-independent autoinduction of
extracellular matrix proteins using recombinant E. coli as the
expression host. Polymer Journal 53(2): 385-391.
Khani, M. & Bagheri, M. 2020. Protein expression and purification skimmed milk as an alternative for
IPTG in induction of recombinant protein expression. Protein Expression and
Purification 170: 105593.
Kim, S. & Kim, Y. 2001. Active site residues of cephalosporin acylase
are critical not only for enzymatic catalysis but also for post-translational
modification. Journal of Biological Chemistry 276(51): 48376-48381.
Kim, Y., Kim, S., Earnest, T.N. & Hol, W.G. 2002. Precursor
structure of cephalosporin acylase: Insights into autoproteolytic activation in
a new N-terminal hydrolase family. Journal of Biological Chemistry 277(4): 2823-2829.
Li, Z., Kessler, W., Van Den Heuvel, J. & Rinas, U. 2011. Simple
defined autoinduction medium for high-level recombinant protein production
using T7-based Escherichia coli expression systems. Applied
Microbiology and Biotechnology 91(4): 1203-1213.
Li, X., Wang, J., Su, W., Li, C., Qu, G., Yuan, B.
& Sun, Z. 2023. Characterization and engineering of
cephalosporin C acylases to produce 7-Aminocephalosporanic acid. Molecular
Catalysis 550: 113595.
Martius, E., Wibisana, A. & Ardiyani, Y.
2018. The optimization of soluble cephalosporin C acylase expression in E.
coli. IJES 7: 29-34.
Mühlmann,
M., Forsten, E., Noack, S. & Büchs, J. 2017.
Optimizing recombinant protein expression via automated induction profiling in
microtiter plates at different temperatures. Microbial Cell Factories 16(1):
220.
Nikolova, G., Georgieva, Y., Atanasova, A., Radulova,
G. & Kapogianni, A. 2021. Autoinduction as means for optimization of the
heterologous expression of recombinant single ‑ chain Fv (scFv) antibodies. Molecular Biotechnology 63(11):
1049-1056.
Niwa, M., Saito, Y., Sasaki, H. & Ishii, Y. 1994. Cephalosporin C acylase. U.S. Patent No. 5,336,613. Washington, DC: U.S. Patent and Trademark Office.
Pollegioni, L., Rosini, E. & Molla, G. 2013. Cephalosporin C acylase: Dream and(/or) reality. Applied Microbiology
and Biotechnology 97: 2341-2355.
Rasyidah,
M.A., Sismindari, S. & Purwanto, P. 2024. Cephalosporin
C acylase: Important role, obstacles, and strategies to optimize expression in E.
coli. Journal of Applied Pharmaceutical Science 14(10): 15-24.
Shahzadi, I. 2021. Scale-up fermentation of Escherichia coli for
the production of recombinant endoglucanase from Clostridium thermocellum. Scientific Reports 11(1): 7145.
Shin, Y.C., Jeon, J.Y., Jung, K.H., Park, M.R. & Kim, Y. 2009.
Cephalosporin C acylase mutant and method for preparing 7-ACA using same. U.S.
Patent No. 7,592,168. Washington, DC: U.S. Patent and Trademark Office.
Sun, H., Liu, T., Luo, H., Nie, Z., Chang, Y., Yu, H. & Zhongyao, S. 2021. Optimization of cephalosporin C acylase expression
in Escherichia coli by high-throughput screening a constitutive promoter
mutant library. Applied Biochemistry and Biotechnology 193: 1056-1071.
Wang, Y., Yu, H., Song, W., An, M., Zhang, J., Luo, H.
& Shen, Z. 2012. Overexpression of synthesized cephalosporin C
acylase containing mutations in the substrate transport tunnel. Journal of Bioscience
and Bioengineering 113(1): 36-41.
Zhang, W., Liu, Y., Zheng, H., Yang, S. & Jiang, W. 2005. Improving
the activity and stability of GL-7-ACA acylase CA130 by site-directed
mutagenesis. Appl.
Environ. Microbiol. 71(9): 5290-5296.
*Pengarang untuk surat-menyurat; email: ahma016@brin.go.id